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SUMARY OF RESEARCH A'TIVITY

Research was conducted and directed in the area of stochastic processes by

three of the Principal Investigators (Cambanis, Kallianpur, Leadbetter) and

their associates, and in estimation in statistical models.by R.J. Carroll and

co-workers. A summary of the main lines of activity in each area follows for

each of the four Principal Investigators. More detailed descriptions of the

work of all participants is given in the main body of the report.

STOCHASTIC PROCESSES

The research effort in stochastic processes was a major part of a

substantial research activity organized as the Center for Stochastic Processes

within the Statistics Department, involving permanent faculty, visitors and

students.

This organization has provided the framework for significant interaction

between the participants--permanent and visiting. In addition the research

program has been enhanced by a regular seminar series (listed by speakers later

in the report) which has provided an excellent vehicle for exchange of current

research ideas.

The primary means for dissemination of results is by means of the Center's

Technical Report Series, containing current research work prior to formal

journal submission. To date 23 technical reports leading (or expected to lead)

to published papers have been produced by the participants, involving research

resu lts in a wide area of stochastic process theory. -The main areas of research
activity for each Principal Investigator and co-workers are as follows:
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S. Cambanis: Asymptotic optimal quantizers, complex symmetric stable

variables and processes, prediction and representation of stable processes,

nonparametric spectral density estimation for stable processes, delayed delta

and pulse code modulation.

G. Kallianpur: Feynman integrals, stochastic nonlinear filtering, stationary

random fields, stochastic differential equations and diffusion approximation

models for neuron activity, white noise and generalized Brownian functionals,

stochastic Radon transforms, splicing of measures; * .

\I

M.R. Leadbetter:3)Extreme values of stationary stochastic sequences and

processes, dependence structure of stochastic processes, extremes of

non-stationary normal sequences, estimation of point process intensities.

ROBJST ESTIMATION IN LINEAR MODEIS

R.J. Carroll: Transformations and regressions: tests for regression

parameters in power transformation models, power transformations and prediction;

heteroscedastic linear models: robust estimators for random coefficient

regression models, adapting for heteroscedasticity, maximum likelihood and

generalized least squares, bounded influence methods; linear and binary

regression with errors-in-variables: robustness in the functional

errors-in-variables regression modiel, ciparison between estimators, binary

models.
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STA4ATIS CAMBANIS

The work briefly described here was developed in connection with problems

arising from and related to the statistical comunication theory and the
A;

analysis of stochastic signal and systems. Item 1 is the completion, and recent

extension, of joint work with my student Neil L. Gerr, whose Ph.D. dissertation

in its final form is described in item 5. Item 3 is the completion of joint

work with Dr. Reza Soltani, a junior visitor supported by this grant. Item 4

describes continuing joint work with Elias Masry of the University of California

at San Diego. Further work in progress will be described at the end of the

current funding period.

1. A szMle class of asymptotically optimal quantizers [1)

A simple class of quantizers is introduced which are asynptotically

optimal, as the number of quantization levels increases to infinity, with

respect to rth nean distortion easure. These asymptotically optimal quantizers

are very easy to compute. Their performance is evaluated for several

distributions and compares very favorably with the performance of the optimal

quantizers in all cases for which the latter have been computed. Also their

asymptotic robustness is studied under location, scale and shape mismatch for

several families of distributions.

2. Complex symetric stable variables and processes [2)

In order to make efficient use of spectral methods in the analysis of

problems involving stationary stable processes, it is necessary to extend to

complex stable variables and processes the structure and tools which have been

-.A
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developed for the real case in (3,4,51 and this is done in this article. The

concepts, tools and properties considered include the covariation, linear

regression, moments and the stochastic integral. The stochastic integral is

considered In the most general case using the concept of covariation. This

approach is simple and adequate for most linear problem, but it does not

provide an expression for the characteristic function of the integral. In the

important special case of integration with respect to a process with independent

stable increments, the characteristic function of the integral in the cOoplex

case is obtained using Hosoya's (61 approach, which is refined and conpleted

here.

3. Prediction of stable processes: Spectral and moving average

representation [7]

For stable processes which are Fourier transforms of processes with

independent increments we cbtain a Wold decomposition, we characterize their

regularity and singularity, and, in the discrete-parareter case, we derive their

linear predictors. In sharp contrast with the Gaussian case, regular stable

processes which are Fourier transform of processes with independent increments

are not moving averages of stable motion.
-4o.

4
"
.

4. Nonparametric spectral density estimation for stable processes [81

It has been shown In (51 and (71 that in problem of linear prediction and

filtering, when the signal and noise are stable processes with spectral

representation, the "spectral density" of these stationary stable processes

plays a role analogous to the role the usual spectral density plays for second

order stationary processes, hence the need to develop consistent estimates of

the spectral density from long records of a sample function of such a stationary

- . . . .

-.. . . .. . . . . . . . . . . . . . . . . . .
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stable process. Both weakly and strongly consistent estimates are obtained,

along with rates of convergence.

5. Exact analysis of delayed delta modulator and an adaptive differential

pulse-code modulator [91

Delayed Delta Modulation (DDM) uses a second feedback loop in addition to

the standard DM loop. While the standard loop conpares the current predictive

estimate of the input to the current sample, the new loop compares it to the

upcoming sample so as to detect and anticipate slope overloading. Since this

future sample must be available before the present output is determined and the

estimate updated, delay is introduced at the encoding.

The performance of DDM with perfect integration and step-function

reconstruction is analyzed for each of three inputs. In every case, the

stochastic stability of the system is established. For a discrete tine i.i.d.

input, the (limiting) joint distribution of input and output is derived, and the

(asymptotic) mean square sample joint error M5E(SP) is computed when the input

is Gaussian. For a Wiener input, the joint distribution of the sanple point and

predictive errors is derived, and M5E(SP) and the tine-averaged HSE (MSE(TA))

are computed. For a stationary, first-order Gauss-Markov input, the joint

distribution of input and output is derived, and the MSE(SP) and MSE(TA)

computed. Graphs of the MSE's illustrate the Improvement attainable by using

DDM instead of DM. With optimal setting of parameters, MSE(SP) (NSE(TA)) is

reduced about 15% (35%).

An Adaptive Matched Differential Pulse-Code Modulator (AMDPCM) is analyzed.

The adaptation of the symmetric uniform quantizer parameter A. is perforned

by fixed mltipliers assigned to the quantizer output levels. The input is

stationary first-order Gauss-Markov. The correlation of the sanples is used as

*the leakage parameter in the matched integrator, with the predictive

.. . . . .4 -.... . -.. " - . - '- A ... ., ",'.-.- *.. -'..*.' -i. .- " .- i . . i .
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reconstruction similarly watched.

We examine the stochastic stability of this sytem when the range of A n is

unconstrained. For a 4-level quantizer and nultipliers (y ,) we derive the 9

limiting joint distribution of the predictive error and An, and compute and

plot as functions of Y c (1,21, MSE(SP), MSE(TA), and the asymptotic mean and

variance of An. We find that the asymptotic performance of AMDPCM does not

*depend on the choice of A0 , that the increase in MSE incurred by using

A(M)DPCM instead of (M)DPCM with At is small, with MSE(A(M* -CM) min
opt

MSE((M)DPCM) as y 4 1, and that the signal-to-noise ratio of A14 '4 does not

depend on the input power.
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G. KALLIANPUR

Research was carried cut in the following areas:

1. Feynman Integrals

Continuation and extension of earlier joint work with my former student C.

Bromley and now partly in collaboration with Professor D. Kannan, visitor at the

Center from the University of Georgia. Problems arising out of this work will

be investigated jointly with Professor G. Johnson of the University of Nebraska

at Lincoln.

2. Stochastic Nonlinear Filtering Theory

This has been my major area of interest for many years. A completely new

approach to the subject is being developed which has already yielded surprising

and gratifying new results. The work which is still -ontinuing, is jointly with

Dr. R.L. Karandikar, visitor at the Center from the Indian Statistical

Institute, Calcutta.

3. Stationary Random Fields

Collaborative work (part of which was reported last year) with Professor V.

Mandrekar, visitor at the Center from Michigan State University.

4. Stochastic Differential Equations and Diffusion Approximation Models for

the Activity of Neurons

This research is the outcome of discussions with Dr. M. Habib, Department

of Biostatistics, and Dr. T. McKenna, formerly of the Department of Physiology,

University of North Carolina at Chapel Hill. The later work is jointly with

Professor R. Wlpert, visitor at the Center from Duke University.

II'-i:. "'-"..". ."_,';J~i; '.,.......................................... ................... t , i ;' "
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5. White Noise and Generalized Brownian Functionals

This is an area of stochastic analysis of which Professor T. Hida of Nagoya

University, Japan, has been one of the founders. During a brief visit to the

Center, we collaborated on some aspects of the suoject related to finite

dimensional approximation.

6. Stochastic Radon Transforms

Professor D. Kolzbw (visitor at the Center from the University of

Erlangen-N~irnberg) and I have discussed this problem with a view to future

collaboration. The work of Professor S. Takenaka, reported separately, seems to

be closely related.

7. Splicing of Measures

This is a problem in measure-theoretic probability theory which was solved

in joint work with Dr. D. Ramachandran, visitor at the Center and now at the

University of Georgia.

Items 4 and 5 are new directions of research started within the last year.

Items 1, 2 and 3 are a continuation of previous work.

Three of my Ph.D. students, Hans Hucke, Mauro Marques and Victor

Perez-Abreu will be working on problems arising from Items 2 and 4.

A brief sumnary of work done under each item is given below.

[1) Feynman integrals [1,2,3,41

Following the analytic continuation approach involving several corplex

variables which was developed in [1,2] a sequential definition was given in the

abstract Wiener space context. A Cameron-Martin formula was derived for a class

of functionals which includes and is larger than the class of Fourier transforms
of bounded complex measures on Hilbert space. The formula holds both for the

-... .... ,. . ., ,. . -. .. -. ; - . . . - - . - . . . -, - .. , -- -. -. . .- " " ' '" - --
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analytic Feynman and the sequential Feynman integral. This result is related to

some recent work of Elworthy and Truman [3].

4.. We are currently investigating the relationship between the sequential

definition and the definitions given by Cameron and Storvick and by Trunmn.

Further details are given in Kannan's report. A paper now in preparation gives

a comprehensive survey and comparison of the various methods now available for

the definition and evaluation of Feynman integrals [41. Applications to

problems of Quantum Mechanics, relationships to other definitions (such as via

the Trotter-Kato product formula) will be taken up in our later work.

[2] Nonlinear filterinq: A finitely additive white noise approach

[5,6,7,81

The stochastic integrals of Ito and Stratonovich, stochastic differential

equations and, more generally, stochastic calculus have been used with

spectacular success in the development of Filtering and Control theory [5]. It

is only in recent yars that a re-examination of the theory has begun from the

point of view of applications. In a series of papers which are the forerunners

of our own work Balakrishnan has questioned the adequacy of the existing theory

(see [61) and advocated the use of finitely additive white noise theory. His

reasons are based on practical considerations, viz., that the Wiener process as

a model for observation noise leads to results which cannot be implemnented. In

[71 and [8] we have constructed a conplete theory of nonlinear filtering for the

important case when signal and observation noise are independent. The starting

point is that of Balakrishnan and I.E. Segal. We supply a suitable definition

of omditional expectation in the finitely additive set up.

White noise versions of the Kallianpur-Striebel formula, the Zakai

equation, the Kunita equation and the Fujisaki-Kallianpur-Kunita (FKK) equation

are obtained. When the observation process is finite dimensional, a partial

..
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differential equation for the unnormalized density (in the finitely additive

context) is derived and the existence and uniqueness of its solution is

established.

The white noise approach has the following advantages:

(a) The theoretical framework within which filtering is performed is a

Hilbert space HT of (relatively smooth) observation paths of Wiener measure

zero but which represent the actual observations.

(b) It leads to a robust procedure when the observations are restricted to

"'T

(c) The robust solutions obtained by Davis and others using the

conventional Ito calculus can be approximated by the solutions in (a). (See

[71).

In the case the observation process takes values in an infinite-dimensional

Hilbert space K, there is no conditional density. The measure-valued equations

of Zakai, Kunita and FKK types are studied directly and existence and uniqueness

• of their solution for each path y in L2((0,T];K) is established (8]. (It

should be noted that these equations are not stochastic equations of Ito type

but "ordinary" equations in which the observed y appears as a parameter).

Robustness is also shown within L2((0,T];K).

Y..

131 Second order stationary randan fields [9,101

The first part of the work which was reported last year, was concerned with

the "time domain" analysis of discrete two parameter second order rancdm fields

(s.o.r.f) [9). A definition of pure nondeterminism was given which led to a

decomposition of the Hilbert space of the s.o.r.f. and to a corresponding four

-fold Wold decomposition of the s.o.r.f. itself. Also, it was shown that

there were three distinct kinds of innovation spaces for this problem.

The second part of the work, carried out in the current year,generalizes

the four-fold Wold and Halmos decompositions to continuous 2-parameter



s.o.r.f.'s (101. These results are consequences of a generalization obtained by

us of J.L.B. Cooper's work to the case of two comruting continuous semigroups of

isometries acting on a separable Hilbert space and satisfying certain

conditions.

A new type of Karhunen representation is derived and the Cramer-Hida theory

of multiplicity is extended: It is shown that associated with a continuous,

stationary, purely nondeterministic s.o.r.f. is a uniquely determined triplet of

(possibly infinite) numbers called the multiplicities of the s.o.r.f. Of these,

two are directional multiplicities and the third, 2-dimensional. Furthermore

they are identified as the dimensions of certain subspaces of the Hilbert space

of the s.o.r.f.

(41 Stochastic differential equations and diffusion approximation miodels

for the activity of neurons (12,13,141

There is an extensive literature on stochastic models in neurophysiological

problems. The work most closely related to our interest in neuronal behavior

are the papers of Tuckwell and his co-morkers and those of Ricciardi and his

colleagues (See (121 for references). Our concern has been to construct a

precise theory which reconciles the use of the discontinuous and the continuous

models considered in the literature.

(i) A diffusion approximation to a discontinuous stochastic model for

neural response (the Tuckwll-Cope model) was established using the functional

central limit theorem of Liptser and Shiryaev [121. Under certain basic

assumptions necessary and sufficient conditions were obtained for the weak

convergence of the sequence of probability measures (on Skorokhod space)

corresponding to the Tuckwell-Ccpe model to the measure of an Ornstein-Uhlenbeck

type (OU) process. A central problem of interest in the study of neuronal

activity is the distribution of interspike intervals, i.e. intervals between



consecutive (random) "firings" of the neuron. The problem is equivalent to

finding the distribution of the first passage times for Markov processes if the

activity of the membrane potential is modeled as a Markov process. The problem

is a very difficult one and solutions in closed form are hard to get even for

the most frequently studied case of the OU process. However, at least the

following qualitative result has been proved: If Tn is the first passage timeC

corresponding to the nth Tuckwelll-Ccpe model (for a constant threshhold c),

then -T-T in distribution, T being the first passage time of the (W process)CpC C

diffusion approximation.

(ii) (with R. Wolpert, [13]). In i) a single neuron is considered. A

more realistic model is to study the activity of a large assemblage of neurons,

in other words, to take the spatial extent of neurons also into account.

Mathematically, the problem calls for more sophisticated techniques. The

approach adopted here leads to infinite dimensional stochastic differential

equations. See the report on Wolpert's work for details.

.1m [5] White noise and generalized Brownian functionals [15]

F', Details are given in Hida's report.

[6] Stochastic Radon transforms

Details are given in Kolzow's report.

[7) Splicing of measures [16,17]

Given two probabilities v and v on (X,A) and (X,B), a probability Y on (X,Av

") is called a splicing of ji and v if Y(AnB) = vW(Av(B) for all A A and BE B

- We use a result of Marczewski to give an elementary proof of Stroock's result

[17 ) on the existence of a splicing. A new proof of Marczewski's result is also

given together with comments on the splicing problem for compact measures [16].
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M.R. LEADBErM

Professor Ieadbetter's primary research effort under the contract involved

extremal theory for stochastic sequences and processes. 7%o main directions

have been investigated: (a) the role played by the "local dependence" structure

of a stochastic sequence in affecting the distribution of its maxima, and (b)

the effect of non-stationarity in extremal results. The results of (a) have

been discussed as a technical report and those of (b) are in a technical report

under current preparation.

In addition M.R. Leadbetter worked with Diane Wo1d on the estimation of

intensity functions of point processes, with results also appearing as a

technical report. The following abstracts summarize the results obtained in

these three papers.

1. Extremes and local dependence in stationary sequences [1)

Extensions of classical extreme value theory to apply to stationary

sequences generally make use of two types of dependence restriction:

(a) a weak "mixing condition" restricting long range dependence,

(b) a local condition restricting the "clustering of high level exceedances

The purpose of this paper is to investigate extremal properties when the

local condition (b) is omitted. It is found that, under general conditions, the

type of the limiting distribution for maxima is unaltered. The precise

modifications and the degree of clustering of high level exceedances are found

to be largely described by a parameter here called the "extremal index" of the

* sequence.

J¢
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. 2. xtremes of non-stationary normal sequences [2]

It has been shown in recent years that classical extreme value theory

extends to apply to stationary sequences under appropriate restrictions on the

amount of dependence involved. In particular the theory applies to stationary

normal sequences under a simple condition concerning the rate of decay of the

correlation sequence. In this paper similar results are obtained for

non-stationary normal sequences with a wide variety of possible form for the

mean and correlation structure. In particular the work includes stationary

cases with added trends and seasonal cxmnponents.

3. on estimation of point process intensities [3]

Smoothed estimations are developed for the intensity function (i.e. density

for the expectation measure) of a point process. The main results concern mean

square and almost sure pointwise consistency and asymptotic distributional

properties of the estimator, emphasizing the features which differ from those in

other forms of function estimation. The results are illustrated in the

particular case of renewal processes.
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DARYL J. DALEY

Dr. Daley conducted research in two areas under support from the contract.

First he considered limit laws for the maximum of weighted independent and

identically distributed random variables as part of the general research effort

in extremal theory being conducted under the contract. In addition he

investigated the problem of obtaining useful lower bounds for the mean waiting

time in a certain class of queueing problems. Abstracts of papers under

preparation in each area are as follows.

1. Limit laws for the maxinum of weighted i.i.d. random variables [1]
Define Mn = max(X0 ,Xl ... X ) for a sequence (X ) of i.i.d.

l'"= n-i n

r.v.s. with d.f. F. Gnedenko (1943) exhibited the class G of all possible

non-degenerate limit laws for Mn and discussed dcmains of attraction of F

for various elements of G. Prompted by the study of limit laws as a t 1 of the

r.v. Y(a) = supn(anXn), we also sought limit laws as b 4 0 of the r.v.

Z(b) - supn(Xn - nb) and, quite generally, of

M = M(w,v) = supn(wn(a)Xn - vn(b))

% for sequences of weights (wn(a)) and translates (vn(b)).
First, we show that M is finite with probability zero or one, and identify

conditions under which M is finite with probability one, namely, in the

non-trivial case that F(x) < 1 for all finite positive x, that

S(1-F((x+vn)/Wn)) < - for some finite x. We then show that a limit lawn=0

for M belongs to G if the r.v.'s

wv) = supnwx -

have a limit law in G, which is little more than a restatement of Gnedenko's

definition of G via a functional equation for types of d.f.'s. As corollaries,

" limit laws for Y(a) and Z(b) belong to G, but me also show that not every F

-..
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LAURENS DE HAAN

Dr. de Haan investigated the extent to which the term "max stable" used to O

describe a random variable may be extended to apply to both random sequences and

continuous time processes. Representations and other properties were obtained

and reported a technical report, whose abstract follows.

A spectral representation for max-stable processes [1)

The elements of an arbitrary max-stable sequence are exhibited as

functionals of a 2-dimensional Poisson point process. The result is extended to

a continuous time max-stable process that is continuous in probability. We

define an analogue of a stochastic integral appropriate for this context.

References

1. L. de Haan, A spectral representation for max-stable processes, Center for
Stochastic Processes Technical Report No. 15, July 1982.
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J. TIAGO DE OLIVEIRA

Dr. Tiago de Oliveira conducted research in the area of extreme values for

bivariate sequences of random variables. Specifically pairs (X ,Yn) were

considered, where X and Yn are (usually) dependent random variables but the

pairs are independent for different values of n. This work thus provides one

step in extending the contract work on univariate theory of extrems of

processes to apply to multivariate cases. The research undertaken was described

in a technical report as swmnarized in the following abstract.

Bivariate extremes: Models and statistical decision [1)

After obtaining the asymptotic distribution of bivariate maxima, a direct

characterization of the asymptotic distribution is given; the 5 known models are

described through their dependence functions and some properties obtained.

Known statistical decision results for the models are described.

References

1. J. Tiago de Oliveira, Bivariate extremes: Models and statistical decision,
Center for Stochastic Processes Technical Report No. 14, June 1982.
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T. HIDA

Hida worked on the following topics during his stay at the Center.

1. Delta function of Brownian motion

3 Following the idea explained in [1] it is possible to make such a

functional as

6 (B(t)-y), t6 the delta function , B(t) a Brownian mtion,
t

to be a generalized Brownian functional. Detailed properties of it were

obtained jointly with H.H. Kuo. An alternative method of defining the Brownian

local time is given by using the functional *" By replacing B(t) with a

linear functional of the B(t), it was proved that the functional plays a similar

role to the ordinary delta function.

2. Infinite dinensional Gaussian kernel

It was rigorously proved that a functional formally expressed in the form
* T *'

- exp[-t/2f 0 B(t)2dtJ, T > 0,

can be shown to be a generalized Brownian functional. The renormalized one ray

be viewed as an infinite dimensional analogue of the Gaussian kernel. In fact,

if we use the theory of Fourier transform introduced to the space of generalized

Brownian functionals by Kuo, me can give plausible interpretations to the fact

that the functional W looks like a Gaussian kernel.

3. Finite dimensional approximation to white noise

This work has been done and is still being done jointly by G. Kallianpur

and Hida. Starting from a formal expression

B(t) = ej(t),
, 

..
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where (e.} is a complete orthonormal system of L2 (10,11) and [X.) is a

system of independent identically distribute Gaussian random variables. te nth

approximation is given by

(t) X eI Wjjn.In
With this approximation to B(t) we are able to give an approximation to the

Iiidifferential operator D/D B(t), the exact meaning of which was not quite well

visualized. By having such an approximation we can compare the operator 3/B(t)

to finite dimensional differential cperators.

A unified method of having renormalization of formal Brownian functionals-

has so far been given by using the T-transformation

(TO)(F) = (Q , exp[i <xC>]O(x)dI(x), 0 E L2(S*,1)

However this approximation will give another, more reasonable interpretation to

renormalization.

4. Conformal group

The infinite dimensional rotation group (see [1]) leads us to discuss, as

it were, infinite dimensional harmonic analysis, which will be an inportant part

of our analysis of generalized Brownian functionals. For the one-dimensional

time-parameter case one can find an interesting subgroup of the rotation group

*-. which is isomorphic to the projective special linear group. As a generalization

to higher-dimensional case, Hida was able to introduce a subgroup, which is

isomorphic to the conformal group arising from quantum field theory. The group

" involves six one-parameter subgroups that are given below:

[n-dimensional time parameter case]

1) tine shifts: St , i =i,2,..., n,

2) isotropic dilation of time,

_II
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3) n-dimensional rotations, i.e. the group SO(n),

4) special conformal transformations given by

R Sz R, R: reflection with respect to the unit sphere,

i - 1,2,..., n.
.'n.

This approach is a developmfent of the joint work with Mr. S.S. Lee and Mr. L.K.

Lee.

References

1 T. Hida, Brownian Motion, Springer-Verlag, 1980.

2. T. Hida, Analysis of Brownian Functionals, Carleton Math. Lecture Notes,
No. 13, 1975.

3. T. Hida and G. Kallianpur, Finite dimensional approximation to white noise,
Center for Stochastic Processes Technical Report under preparation.
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D. KANNAN

1. Feyrmnan Inteqrals [1,2,3,4,51

Further development of Kallianpur and Bromley's work has led to new

research in the following directions.

(a) Definition of sequential Feynman integrals (SFI) in an abstract

Wiener space set up. Concentrating attention on two physically interesting

classes of functionals, it is shown that the SFI includes and extends the

Fresnel integral of Albeverio and Hpegh-Krohn as Well as the sequential path

integrals of CaTnron-Storvick and of Tumn (6].
r:- (b) The Cameron-Martin formula for SFI obtained by Kallianpur is improved -

by showing that it holds when the increasing projection family in Kallianpur's

proof is replaced by an arbitrary sequence of finite-dimnsional projections

*" converging strongly to the identity. As a consequence, the generality of the

result is considerably enhanced.

(c) Extension of SFI to cases that involve indefinite bilinear forms.

(d) Applications of the above work to the study of the Schroedinger

equation and of the stationary phase method is planned for future work.

References

1. S.A. Albeverio and R.J. Hoegh-Krohn, Mathematical theory of Feynman path in-
tegrals, Lecture Notes in Mathematics, No. 23, Springer-Verlag,
(1976).

2. G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic
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cesses lechnical Report No. 1, October 1981.

3. A. Truman, The Feynman naps and the Wiener integral, J. Math. Physics 19,
1978.

4. K.D. Elworthy and A. Truman, A Cameron-Martin formula for Feynman integrals
(The origin of the Maslov indices), Invited lecture given at VIth
International Conference on Mathematical Physics, Berlin, August,
1981.
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5. R.H. Caneron and D.A. Storvick, Analytic Feynnen integral solutions of an
integral equation related to the Schroedinger equation, J. d'Analyse
Math. 38, 1980.

6. G. Kallianpur and D. Kannan, Sequential Feynan integrals, Center for Sto-
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D. KOLZOW

1. Rmey Theory

KOI1zow gave a comprehensive series of lectures on the "Applications of

Ramsey Theorems to Analysis and Probability." These lectures, which included

some new research, presented a unified method of treating problems in analysis,

* probability theory, using Ramsey theory techniques. Sane are listed below:

(i) Sucheston's and Iorentz's extension of a theorem of Menshov and Visser on

mixing sequence of events. Koizow gave a simpler proof of this result. in

addition, a new existence theorem for subsequences which are stable of any

order. (ii) The infinite Ramsey theorem and a theorem of Erdos-Rado. (iii)

Schrader's extension of Helly's selection theorem.

2. The Radon Transform

Research on the Radon transform centered around the following problems:

(a) Extension of the Radon transform to measures on a separable Hilbert

space with respect to a given Gaussian measure.

(b) Proof (using Radon transforms) of the Wold-Cramer theorem on the

unique determination of a finite measure on Rn by its values on half spaces.

Also, a derivation of an inversion formula.
.,4

(c) A "folklore" Wold-Cramer theorem for separable Banach spaces and the

corresponding reconstruction problems were discussed.

*3. Stochastic Radon Transform

In cooperation with G. Kallianpur work was initiated for developing the

concept of a stochastic transform. In particuar, the work of &nccv and others

on an integral geometric approach to Ihvy's Brownian motion was studied.

"h , ..... ,. ,-. **.-~ *,- .~.. -.. .--.. *...*. . .. .
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.. References

1. D. K'IGzow, Lecture Notes on Ramsey Theory, in preparation.

2. D. K'izow, On the existence of subsequences stable Of any order, in prepara-

tin

!'C

-,

ao'

*t

.. - - . .> --4 - i- 2 --

J -"



-. ~~~ - - 7.- 7 - - -

-27-

I-.o H. H. KUO

1. Generalized Brownian Functionals and Donsker's Delta Function [1) l

in addition to giving a seminar in the Center, Kuo wo~rked in a series of

private seminars with Hida and Kallianpur in which he expounded his approach to
generalized Brownian functionals. He has obtained several new results including

a rigorous treatment of Dnsker's delta-functional. Details of collaborationI1
with Hida have been given above in Hida's report. The possibility of using the

white noise approach to the Malliavin Calculus was discussed in these seminars

and we hope that it will lead to collaborative work on this subject.

References

1. H.H. Kuo, Dnsker's Delta function as a generalized Brownian functional and
its application, to appear in Proc. of the IFIP-ISI Conference on
the Theory and Application of Randan Fields, G. Kallianpur, ed.,
Springer, 1982.
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V. JWEND1AR

1. Continuous two-paramter second order stationary random fields [I]

Details are given in Kallianpur's report.

2. Markov property for Gaussian ultraprocesses [2]

In this joint work with A.R. Soltani the authors introduce Gaussian

processes taking values in ultradistributions. They obtain a general theorem

giving necessary and sufficient conditions for germ field Markov property in

terms of the structure of the reproducing kernel Hilbert space. The results of

Kusuoka (in the Gaussian case), Kallianpur-Mandrekar, Molchan and others are

obtained as a conseqaence.

3. Central limit problem in Banach spaces [3]

Work on this subject which was begun while Mandrekar was at the Center was

completed during his stay in Strasbourg. The Lecture Notes of a course given at

Strasbourg contains a general survey of the problem together with some new

work.

References

1. G. Kallianpur and V. Mandrekar, Cczmting seiigroups of iscmetries and Kar-
hunen representation of stationary random fields, Center for Stochas-
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ALEKSANDER ION

1. Decomposability of p-cylindrical martingales [11

A class of p-cylindrical martingales in locally convex spaces is studied.

We obtain a general form of convergent p-cylindrical martingales in barrelled

spaces. Using the locally convex space technique, new results are deduced even

in Banach spaces. It is proved that for p 2 1 the adjoint to p-absolutely

summing operator is p-deconpoeing for any p-cylindrical martingale.

This study is motivated by the remark of Metivier and Pellaumail ((21,I.
Chapter 6) that it is possible to develop the theory of stochastic integration

with respect to 2-cylindrical martingales in Banach spaces, cf. also (3]. The

important examples are cylindrical Brownian motion and white noise in tine and

in space. Such processes have been discussed in connection with quantum field

theory, partial differential equations involving random term and filtering

theory, cf. for example [4] and references therein.

2. Prediction of processes stationAy in norm [5]

The classical L Wiener-Kolnogorov prediction theory has been extended to

the following two cases: (1) L0; the concept of prediction for strictly

stationary sequences of random variables has been introduced by K. Urbanik

.3 (1964) [6]. (2) LP , 1!; p!5 2; S. Carbanis, G. Miller and R. Soltani (1981-82)

[7,8] have developed the linear prediction theory for p-th order and stable

processes. It is very desirable to have analogues of the classical theory for

certain stochastic processes which are nearly, but not exactly, Gaussian or

second order.

In the search for the greatest conmon denominator of these tw cases, the

notion of a process stationary in norm emerges. The starting points for

S.
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the present investigation are two questions arising immediately. First, does

one get the most general "reasonable" linear prediction theory by amalgamating

these two known techniques? The answer is yes and the Wold decomposition as

well as some characterizations of copletely ron-deterministic processes are

obtained. Secondly, linear predictors are limits, and the question arises in

which sense do they converge. The present investigation concentrates on

convergence in LP-norm, 0 !< p < , though many of the methods developed apply

as well to convergence in the topology of certain Orlicz and Lorentz spaces.
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4.

CLYDE D. HARDIN, JR.

General (asymmetric) stable variables and processes (1]

Previous research in the field of stable processes has dealt almost

exclusively with symmetric stable processes. This research deals with those

stable variables and processes where the symmetry requirement has been dropped.

Such "skewed" processes are clearly of wider applicability.

Specifically, we determine the form of all strictly stable independent

increments processes and develop a Wiener-type stochastic integral with respect

to these processes.. We prove a generalization of the spectral representation

theorem for symmetric stable processes to general stable processes: it says,

loosely, that all stable processes are stochastic integrals with respect to a

stable process with stationary, independent increments and "maximum skewness."

With the aid of the representation, we solve some regression problems. For

example, we show that the regression of one stable variable upon another is not

always linear, in sharp contrast with the symmetric case. We determine

necessary and sufficient conditions for its linearity and determine the

regression function when it is not linear.

Also, some decompositions of general stable distributions are given and

some mount inequalities are proved.

References

1. C.D. Hardin, General (asymmetric) stable variables and processes, Center for
Stochastic Processes Technical Report in preparation.
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ST"EEL T. HU3ANG

Stochastic integrals for Gaussian processes:

the differential formula 11i

Stochastic integrals for Gaussian processes were developed in [2] as a

natural extension of Ito's integral for a Wiener process. The corresponding

stochastic calculus is developed further in this paper. By exploiting the

tensor product structure of the nonlinear space of a Gaussian process, a

stochastic differential formula is obtained analogous to the celebrated Ito

formula. An application of the differential formula to inequalities for the

multivariate normal distribution is also given.

• .References

1. S.T. Huang, Stochastic integrals for Gaussian processes: The differential
formula, Center for Stochastic Processes Technical Report under pre-
paration.

2. S.T. Huang and S. Cawbanis, Stochastic and multiple Wiener integrals for
Gaussian processes, Ann. Probability 6 (1978), 585-614.
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JORG HOSLER

p

Dr. Hiisler's work under the contract involved investigation of extrenes of

non-stationary stochastic sequences. In particular general dependence

conditions were obtained under which certain distributional extremal results for

stationary sequences still hold for non-stationary cases. This research was

reported in a technical report described in the following abstract.

Extreme values of non-stationary seauences and the extremal index II

The conditions used to generalize the extreme value theory for stationary

random sequences to non-stationary sequences are studied with respect to their

necessity. We find that the extremal index, defined in the stationary case,

plays a similar role in the non-stationary case. The details show that this

index describes not only the behavior of exceedances above a high level constant

boundary, but also above a non-oonstant high level boundary.

References

1. Jrg Hier, Extreme values of non-stationary sequences and the extre-al
index, Center for Stochastic Processes Technical Report No. 20, Octo-
ber 1982.

I

. ,. *- -



+ + ++ .C C. ..-- .-. -- - -.

-34-

R.L. KARANDIKAR

1. Nonlinear Filtering Theory [1,21

Details are given in Kallianpur's report.

2. Other Related Work in Progress

(i) Nonlinear filtering problems for two-parameter processes. It

appears that the white noise approach is a natural and, perhaps, a sinpler

technique than 2-parameter martingale theory. The latter has been used in work

of E. Wong (and M. Zakai), by H. Korezlioglu and others in multiparanter

filtering problems. (ii) Likelihood rations for 2-pararreter processes, again

using the white noise nodel. Details will be given in a later report.

References
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to nonlinear filtering, Center for Stochastic Processes Technical Re-
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WILLIAM P. MCORMICK

Dr. McCormick has conducted research in the area of extremes of stationary

- Gaussian (normal) sequences. Work copleted and reported as a technical report

concerns the limiting distribution of the size of the jufips in the sequence of

partial maxima. Current work involves probability-one results and in particular

strong laws for extremes of Gaussian sequences. An abstract for the reported

work and sunmary of work in progress are as follows.

1. A conditioned limit law result for jumps in the sequence of partial maxi-

ma of a stationary Gaussian sequence [I]

Conditional on a junp occurring, the limiting distribution for the size of

the jump in the partial maxima sequence for a class of stationary Gaussian

sequences is derived. It is shown that the limiting distribution is exponential

with mean (1-a)I/ 2 where a equals the atom at zero of the spectral

distribution function associated with the correlation function of the sequence.

This result is generalized to include the entire junp sequence subsequent to a

jump conditioned to occur.

2. A strong law result for extreme values fran Gaussian sequences (2]

In a recent paper V. Hebbar [3] showed the following result. If (Xn ,nl)

is a stationary sequence of standard normal variables having correlation

function rn and if Mn = max(X 1 1 X2 ,..., Xn) , Sn = second max

(X,,X2'... , X), an = (loglogn)(2ogn) 2 andb n = (2logn)1/2 -

(loglogn + log4 )(8logn) -I/2 then under the assunption that

,, ,, .: , , ., ... .- ... o - , .- . -, . -< - -. ..... ".. , . . . . . . . ., , , .- . . .
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zn(logn) 2+a =0(1) as n-

for some a> 0 we have that the set of almost sure limit points of

M -b S -b
-I n n n n_) n>}

n n

coincides with the set

A = [(x,y): 05yx and x + y

My work improves Hebbar's result by relaxing the mixing conditions. It is shown

that the above result remains true under the assunption rn logn = 0(1).
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D. RAMACHANDRAN

1. Large Deviation Theory

I investigated, jointly with Professor G. Kallianpur, possible extensions

of large deviation thoery (see [1] and references therein). For the case of

Markov processes we attempted to derive the results of Donsker and Varadhan

using multincunial type approximations. Sae of the results obtained by us were

found to be contained in an article of L.B. Boza and our work VMs continued in

other directions. We worked on extending to more general cases the Bahadur

approach for the i.i.d. case in the derivation of the point entropy function.4

* 2. Disinteqration Problems

We worked on unifying known theorems on disintegration of probability

spaces and some related questions. We pursued the invariant measure problem

connected with recent attempts on descriptive characterization of dynamical

systems.

3. Stochastic Filterinq Theory

In order to pursue some research problems in this area, we undertook a

planned study of stochastic filtering theory as developed in the recent book of

Professor Kallianpur [21 and related monographs. I gave lectures on the Ito

* stochastic integral and linear stochastic differential equations to graduate

students who wanted to pursue this topic.
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S CAROL SCHOENFEIDER

Wighted 9uantile sampling in estimating the integral

of a stochastic process [I)

The integral of a stochastic process over an interval is estimated by a

* weighted linear conbination of observations of the process at n points. The

estimate is obtained by first dividing the interval into m subintervals whose

endpoints consititute a regular sequence of points corresponding to a given

density. Then n' sample points are chosen from each subinterval as certain

fixed quantiles of the uniform density over that subinterval. (Here n' m = n

and n' does not depend on n). The weights are chosen to depend only on the

quantile corresponding to each sample point within a subinterval.

Asymptotic expressions for the mean square error are obtained for midpoint

sampling (n'=l) introduced by Tubilla (21 and for more general sampling schemes.

It is seen that the rate of convergence of the wean square error to zero is

n-2 min(,n')-2, where the process has at least t continuous quadratic mean

derivatives. The rate obtained in the literature for a sequence of

asymptotically optimal estimators is n 2 -2. In certain cases, e.g., when =

1, n'=l, and the quantile chosen is the median, the type of estimator considered

here is shown to be asymptotically optimal.
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A.R. SOLTAN I

Dr. Soltani completed his joint work with Professors Mandrekar and Cambanis

described in items 1 and 2 and pursued his own work on the extrapolation of

random fields described in item 3.

1. Markov property for Gaussian ultraprocesses E1]

We introduce Gaussian processes taking values of ultrad istributions. We

obtain a general theorem giving necessary and sufficient conditions for germ

field Markov property in terms of the structure of the reproducing kernel

Hilbert space. As a consequence, ue cbtain results of Kusuoka (in Gaussian

case), Kallianpur-Mandrekar, Molchan, Rozanov, Okabe-Kotani, Kotani and Pitt.

The approach also explains the role of conditions put by the latter three

authors in the stationary case.

2. Prediction of stable processes: Spectral and moving average

representations [2]

For stable processes which are Fourier transforms of processes with

independent increments we cbtain a Wold decomposition, we characterize their

regularity and singularity, and, in the discrete-parameter case, w, derive their

linear predictors. In sharp contrast with the Gaussian case, regular stable

processes which are Fourier transforms of processes with independent increments

are not roving averages of stable motion.

3. Extrapolation and moving average representation for stationary random

fields and Beurlinq's theorem [3]

Strong regularity for staitonary random fields is discussed. An extension

of the classical Beurling theorem to functions of several variables is given.

--. . -
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Necessary and sufficient conditions for the moving average representation of

stationary random fields are cbtained. A recipe formula for the best linear

extrapolator is also given.
A
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C3ING-YI SUEN

Efficiency and optimality of factorially balanced designs

for correlated errors [1)

Under the assumptions of a linear model with fixed effects and

uncorrelated, homoscedastic errors, several classes of efficient, balanced

designs for factorial experiments were constructed in (2]. In this project, the

author has first studied the variations in the performance of the balanced

factorial experiments constructed in (2], under the assunption that the errors

are no longer homscedastic and uncorrelated but are correlated according to the

nearest neighbor covariance model. Experimental arrangements which can be

derived from already constructed balanced designs so that these will attain high

efficiency and/or cptimality (D-,A- or E-cptimal or weakly universally cptimal)

under the nearest neighbor correlation nodel, are under investigation.
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S. TAK.NAKA
Ia

1. TWo parameter filtering problems using Radon transforms [11

Takenaka's projected research (which is still in progress) is to use white

noise and Radon transforms to solve certain 2-parameter filtering problems of

practical importance - e.g. image detection in x-ray pictures. The white noise

appears in the representation of Lvy's Brownian motion. A decomposition of

white noise in spherical harmonics has been obtained in the course of the uvrk.

The techniques involved are related to the work of 6 encov on LAvy's Brownian

motion and Helgason's work on the Radon transform.

References

1 1. S. Helgason, Radon Transforms, Birkhauser, 1980.

i

lmm



. , -44-

R. WDLPERT

1. Stochastic differential equations in infinite dimensional spaces

This research is an outgrowth of the work on stochastic models for the

activity of neurons. The problem described in Kallianpur's report (para. 4(ii))

leads naturally to problems involving stochastic differential equations (SDE's)

for processes taking values in infinite dimensional Hilbert spaces or in S( Rd)':

(i) A natural derivation of the SDE for infinite dimensional Ornstein-Uhlenbeck

type process is given based on the following sinple considerations [4].

(a) The process is Gaussian and (with suitable initial value) absolutely

continuous with respect to SC Y -valued Wiener process;

(b) There exists a non-anticipative representation (in the sense of

Kallianpur and Oodaira) for any process satisfying (a);

(c) The process is Markov;

(ii) A model which studies activity of neurons which are spatially extended

(e.g. on dendrites) leads to an S'-valued, time-discontinuous process

satisfying an SDE which can be called an infinite dimensional analogue of the

Tuckwell-Cope model. The main result obtained pertains to weak convergence of

the corresponding measures pn defined on D([O),S') to an Ornstein-Uhlenbeck

type process satisfying a suitable SDE. Further generalizations are being

investigated (5]. The work has obvious connections with the work (on neuronal

activity) of J. Walsh, with the Holley-Stroock paper on infinite particle

systems and with the string model of Funaki and of Miyahara.

I
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L. HAZARES IGH

Hazareesingh's min research work (which is being carried out partly for a

Doctoral thesis at the University of Georgia under the direction of Professor

Kannan) is in the theory of product integration in Banach algebras with unity,

in particular, the connection between the integration theory of Masani and that

of Lee. The following questions are being explored: (i) the product integral

representation of the generalized Fredholm determinant, (ii) path integration

using Masani's integral. The possibility of extending Hida's work on

generalized Brownian functionals is also being considered.

'- I

.9,

4,% ,: + , + + . . II



I -47-

..

V'.:

i-.

REERC N SIMTO I TAITIA .DI

U,

4'-''." ... .. . " - " - i' " " " " ' " " ' "' '



-48-

RESEARCH IN ESTIMATION IN STATISTICAL MCDEIS

RAYMCND J. CARROLL

During the past year I have continued my research on robustness and the

linear model. Research has been focused on the following areas: robust and

efficient estimation in transformation models; robust estimation in models with

nonconstant variances (heteroscedasticity); linear and nonlinear models in which

some of the predictors are measured with error; applications of stochastic

approximation to help find optima in complex simulation models. My Ph.D.

student, Paul Gallo, completed his research and graduated with his Ph.D. degree

in August. I now have two additional students, David Giltinan and Ien

Stefanski, who should complete their Ph.D. research by August, 1983. Gallo

worked in the linear errors-in-variables models, Giltinan is working on

robustness in heteroscedastic linear models and Stefanski is focusing on binary

regression models, discussing robustness and errors-in-variables.

1. Transformations and Regressions

Note: The first and second articles in this subheading are new. The third

and fourth are coupletion (new theory, examples of Monte Carlo) of work listed

last year as "in preparation." The fourth was inadvertently emitted last year.

l[] Tests for regression parameters in power transformation

models

We study tests of hypotheses for regression parameters in the power

transformation model. In this model, a usual test consists of estimating the

correct scale and then performing the usual linear model F-test in this estima-
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ted scale. We explore situations in which this test has the correct level

asymptotically as well as comparable power to Wald's test or the likelihood

ratio test. In particular, the oorrect level is attained for simple linear

regression, randomized analysis of covariance and same simple factorial designs.

In most multiple regression models, the usual test has the wrong level; the
exceptions depend on various forms of orthogonality.

[2] Power transformations when fitting theoretical models to

data (with D. Ruppert)

We investigate power transformations in nonlinear regression problems when

there is a physical model for the response but little understanding of the

underlying structure. In such circumstances and unlike the ordinary power

transformation model, both the response and the model must be transformed

simultaneously and in the same way. We show by an asymptotic theory and a small

Monte Carlo study that for estimating the model parameters there is little cost

for not knowing the correct transform a priori; this is in dramatic contrast to

the results for the usual case that only the response is transformed. Examples

are included; in particular, we consider in detail the spawner-recruit

relationship for Atlantic nenhaden, as well as an example from chemistry.

[3] Prediction and power transformations when the choice of

power is restricted to a finite set.

We study the family of power transformations proposed by Box and Cox (1964)

when the choice of the power parameter is restricted to a finite set

The behavior of the Box-Cox procedure is as anticipated in two extreme cases:

when the true parameter X is an element of S and when X0 is "far" from

1R' We study the case in which X0 is "close" to QR' finding that the

resulting methods can be very different from unrestricted maximum likelihood and

.'
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that inferences may depend on the design, the values of the regression

parameters, and the distance of X to %. The paper focuses on prediction

and is thus a companion to [4] by Carroll and Ruppert. We find in particular
that data transformation can be very costly in the sense that prediction

estimates are often much wore variable than is generally recognized.

[4] On prediction and the power transformation family (with D. Ruppert).

The power transformation family is often used for transforming to a normal

linear model. The variance of the regression parameter estimators can be much

larger when the transformation parameter is unknown and must be estimated,

compared to when the transformation parameter is known. We consider prediction

of future untransformed observations when the data can be transformed to a

linear model. When the transformation must be estimated, the prediction error

is not much larger on average than when the parameter in known. However, the

accuracy of prediction at individual design points can be greatly affected by

data based transformation.

2. Heteroscedastic Linear Models
Note: The first article in this subheading is a completion and revision of

work listed last year as in "preparation." The second and third are

comprehensive revisions of earlier work, especially through the computations.

The fourth is still in preparation.

[5) Robust estimators for random coefficient regression models

(with D. Ruppert).

Random coefficient regression nodels have received considerable attention,

especially from econometricians. Previous work has assumed that the

"J
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coefficients have normal distributions. The variances of the coefficients have,

in previous papers, been estimated by maximum likelihood or by least squares

methodology applied to the squared residuals from a preliminary (unweighted)

fit. In this paper we propose several robust estimators for random coefficient

models. We compare them by Monte Carlo with estimators based on least squares

applied to the squared residuals. The robust estimators are best overall, even

at the normal model.

[61 Adapting for heteroscedasticity in linear models

In a heteroscedastic linear model, it is known that if the variances are a

parametric function of the design, then one can construct an estimate of the

regression parameter which is asymptotically equivalent to the weighted least

squares estimate with known variances. We show that the sane is true when the

only thing known about the variances is that they are an unknown but smooth

function of the design or the mean response. Some preliminary Monte Carlo is

very encouraging.

".* (71 A comparison between maximun likelihood and generalized least

squares in a heteroscedastic linear model (with D. Ruppert).

We consider a linear model with normally distributed but heteroscedastic

errors. When the error variances are functionally related to the regression

parameter, one can use either maximum likelihood or generalized least squares

to estimate the regression parameter. We show that likelihood is more sensitive

to small misspecifications in the functional relationship between the error

variances and the regression parameter. Monte Carlo wrk demonstrates that in

small samples, a proper robust generalized least squares as proposed in (131 by

Carroll and Ruppert is far superior to maximum likelihood.
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(8] Bounded influence methods for heteroscedastic regression

models (with D. Ruppert and D. Giltinan).

In [ 13], Carroll and Ruppert introduced a class of distribution robust I

estimators for the regression model with non-constant variance. This paper

introduces methods for bounding the influence of extraordinary design as well as

outlying responses. (Note: this manuscript is still in preparation).

3. Linear and Binary Regression Models with Errors-in-Variables

Note: The first two items in this section were listed last year as "in

preparation." This third is new.

[9] Some aspects of robustness in the functional errors-in-

variables regression model (with Paul Gallo).

This paper considers regression models in which some of the predictor

variables are measured with error. We present a class of distribution robust

estimators for the regression coefficient and prove consistency and asymptotic

normality. A' Monte.Carlo study is also included, showing that our methods can

be very successful.

[101 Comparisons between some estimators in functional errors-in-

variables regression models (with Paul Gallo).

We study the functional errors-in-variables regression model. In the case

of no equation error (all randomess due to measurement errors), the maximum

likelihood estimator (MLE) computed assuming normality is asymptotically better

than the usual moments estimator, (MME), even if the errors are not normally

distributed. our Monte Carlo study confirms this result, but shows that there

are good reasons to favor the moments estimator for samples of the size

ordinarily encountered in practice.
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For certain statistical problems such as randomized two group analysis of

covariance, the least squares estimate is shown to be better than the

aforementioned errors-in-variables methods for estimating certain important

contrasts. We also consider the robust methods w introduced in [9], showing

them to be preferable to both the MLE and the MME in many circumstances.

(111 Errors-in-variables for binary reqression models (with C. Spiegelman

and R. Abbott).

We consider in detail probit and logistic regressions models when some of

the predictors are measured with error. For normal measurement errors, the

" functional and structural maximum likelihood estimates (MLE) are considered; in

the functional case the MLE is not generally consistent. By an example and a

simulation, we show that if the measurement error is large, the usual estimate

of the probability of the even in question can be substantially in error,

especially for events of high probability.

4. Other Topics

[12] Consistency and asymptotic normality for binary errors-in-,

variables nmcdels (with D. Ruppert and L. Stefanski).

In [10], Carroll, et al. considered binary regression (e.g., 'logistic and

probit regression) when some of the predictors are measured with error. If the

predictors are treated as non-random (the functional model), they showed that

the MLE is inconsistent in general for the binary regression parameter. We

consider the case that independent replications of the predictor variables are

made. We obtain sharp results on the size of m(N) relative to N necessary for

*consistency and asymptotic normality. (Note: this manuscript is still in

preparation).
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[13] Monte-Carlo optimization by stochastic approximation, with appli-

cation to harvesting of Atlantic menhaden (with D. Ruppert, R.L.

Reish and R.B. Deriso).

In a recent study of the Atlantic menhaden, a commrcially important fish

in the herring family (Clupeidae), we made extended use of stochastic

approximation. This paper in is intended to introduce stochastic approximation

to those statisticians unfamiliar with the area. A stochastic simulation model

of the menhaden population is used as an exanple, but the paper is not addressed

to only those working in fisheries. In this nodel, two variables are used to

define the harvesting policy. For any values of these variables, the model will

produce a random catch, and for a specified utility function the objective is to

find the values of the variables which maximize the expected utility of the

catch. Therefore, this is a classical response surface problem. However,

nonsequential response surface methods would be extremely expensive to apply

.* here. We used stochastic approximation to estimate the policy maximizing the

expected utility of the catch.

a.-.
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R.J. Carroll, Adapting for heteroscedasticity in linear models, Ann. Statist.,
1982, to appear.

R.J. Carroll, Tests for regression parameters in power transformation models,
Scand. J. Statist., 1982, to appear.

R.J. Carroll, Power transformations when the choice of power is restricted to a
finite set, J. Amer. Statist. Assoc., 1982, to appear.

R.J. Carroll, Discussion of Huber's paper "Minimax aspects of bounded influence
regression," J. Amer. Statist. Assoc., 1982, to appear.
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R.J. Carroll, R.N. Holt and V. Scarpello, Towards understanding the contents of
the "Black Box" for predicting complex decision raking outcomes, Decision
Sciences, (1982), to appear.

R.J. Carroll and D. Ruppert, A comparison between maximum likelihood and gene-
ralized least squares in a heteroscedastic linear model, J. Amer.
Statist. Assoc., 1982, to appear.

R.J. Carroll and D. Ruppert, Weak convergence of bounded influence regression
estimates with applications to repeated significance tests in clinical
trials, J. Statist. Plan. and Infer., 1982, to appear.

R.J. Carroll and D. Ruppert, Rcbust estimators for random coefficient regression
models. To appear in "Contributions to Statistics: Essays in Honour of
Professor Norman. L. Johnson," P.K. Sen, Bd., North Holland, New York,
1982.

G. Kallianpur, on the diffusion approximation to a discontinuous model for a
single neuron. To appear in "Contributions to Statistics: Essays in
Honour of Professor Norman L. Johnson," P.K. Sen, Ed., North Holland, New
York, 1982.

G. Kallianpur and C. Bromley, Generali71d Feynman integrals using analytic con-
tinuation in several complex variables, Stochastic Analysis, M. Pinsky,
ed., Marcel-Dekker, (1982), to appear.

G. Kallianpur and R.L. Karandikar, A finitely additive white noise approach to
nonlinear filtering, J. of Appl. Math. Opt., 1982, to appear.

G. Kallianpur and V. Mandrekar, Nondeterministic random fields and Wald and Hal-
nos decompositions for commuting Isometries, Prediction theory and
Harmonic Analysis, A Pesi Masani Volume, V. Mandrekar and H. Salehi, eds.
North Holland, (1982), to appear.

G. Kallianpur and V. Mandrekar, Coamuting semigroups of isometries and Karhunen
*representation of stationary random fields, Proc. of the IFIP-ISI Confer-

ence on the Theory and Application of Random Fields, G. Kallianpur, ed.,
Springer Lecture Notes Series, to appear.

G. Kallianpur and D. Ramachandran, On the splicing of measures, Ann. Proba-
bilit, 1983, to appear.

M.R. I better and D. Wold, On estimation of point process intensities. To
appear in "Contributions to Statistics: Essays in Honour of Professor

.0 Norman L. Johnson," P.K. Sen, ed., North Holland, 1982.

* J. Milliken, M.R. Leadbetter and R.J. Carroll, Hazard indicators for polycyclic
organic matter, Proc. 1982 P.O.M. Conference, Battelle, Columbus, Ohio,
to appear.
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CENTER FOR STOCHASTIC PROCESSES
TECHNICAL REPORTS

1. "Generalized Feynman integrals using analytic continuation in several complex
variables." G. Kallianpur and C. Bromley, Oct. 81.

2. "Ncneterministic random fields and Wold and Halmos decompositions for
ocmmuting isometries." G. Kallianpur and V. Mandrekar, Nov. 81.

3. "Saupling designs for the detection of signals in noise." S. Canbanis and

E. Masry, Oct. 81.

4. "on the splicing of measures." G. Kallianpur and D. Ramachandran, Dec. 81.

5. "Aarkov property for Gaussian ultraprocesses." V. Mandrekar and A. Soltani,
jan. 82.

* 6. "Rando= designs for estimating integrals of stochastic processes:
, & Asymptotics." C. Schoenfelder, Feb. 82.

7. "Commuting semigroups of isometries and Karhunen representation of second order
stationary random fields." G. Kallianpur and V. Mandrekar, Mar. 82.

8. "A simple class of asymptotically optimal quantizers." S. Carmbanis and
N. Gerr, May 82.

9. "Extrapolation and moving average representation for stationary random fields
and Beurling's theorem." A. Soltani, May 82.

10. "Complex symmetric stable variables and processes." S. Cambanis, June 82.

_ 11. "Prediction of stable processes: Spectral and moving average representations."
, .S. Cobanis and A. Soltani, May 82.

12. *Extremes and local dependence in stationary sequences." M. Leadbetter,
June 82.

13. "A Cameron-Martin formula for Feynman integrals." G. Kallianpur, June 82.

14. "Bivariate extremes: Models and statistical decision." T. de Oliveira,
June 82.

15. "A spectral representation for max-stable processes." L. de Haan, July 82.

16. "On estimation of point process intensities." M.R. Leadbetter and Diane Wold,
July 82.

..1 17. "A conditioned limit law result for jumps in the sequence of partial maxima of a
stationary Gaussian process." William P. McCormick, August 82.

18. "On the diffusion approximation to a discontinuous model for a single neuron."

G. Kallianpur, Aug. 82.
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19. "Decomposability of p-cylindrical martingales." Z. Suchanecki and A. Weron,Oct. 82.

2). "Extreme values of non-stationary sequences and the extremal index." Jurg
Busler, Oct. 82.

21. -A finitely additive white noise approach to non-linear filtering." G. Kallianpur
and R.L. Karandikar, Oct. 82.

22. "Exact analysis of a delayed delta modulator and an adaptive differential pulse-
code modulator." N.L. Gerr, Nov. 82.

23. "Nonparametric spectral density estimation for stationary stable processes." E.

Masry and S. Cambanis, Dec. 82.

TECHNICAL REPORTS IN PREPARATION

1. "On renewal processes and zeros of Gaussian noise." J. de Mare, in preparation.

2. "General (asymmetric) stable variables and processes," C.D. Hardin, in preparation.

3. "Finite dimensional approximation to white noise," T. Hida and G. Kallianpur, in
-',, preparation.

4. "Stochastic integrals for Gaussian processes: The differential formula," S.T. Huang,
in preparation.

5. "Sequential Feynman integrals," G. Kallianpur and D. Kannan, in preparation.

V 6. "A white noise approach to nonlinear filtering-infinite dimensional signal and cbser-
vation process," G. Kallianpur and R.L. Karandikar, in preparation.

7. "S( Rd) '-valued diffusion approximations to stochastic models for spatially distri-

buted neuronal responses," G. Kallianpur and R. Wolpert, in preparation.

8. "A derivation of Ornstein-Uhlenbeck type stochastic differential equations for in-
finite dimensional processes," G. Kallianpur and R. Wolpert, in preparation.

9. "Extremes of non-stationary normal sequences," M.R. Leadbetter, in preparation.

10. "A strong law result for extreme values from Gaussian sequences," W.P. McCormick,
in preparation.

11. "Weighted quantile sampling in estimating the integral of a stochastic process,"
Carol Schoenfelder, in preparation.

12. "On constructions of balanced factorial experiments," C. Suen, in preparation.

13. "Prediction of processes stationary in norm," A. Weron, in preparation.

14. D.J. Daley and P. Hall, Limit laws for the maximu= of wighted i.i.d. random
variables, Center for Stochastic Processes Technical Report in pre-
paration.

IS. D.J. Daley, The tight lower bound on the mean waiting time in a class of
GI/G/1 queues, Center for Stochastic Processes Technical Report in
preWration.
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INSTITUTE OF STATISTICS MIMED SERIES TBCHNICAL REPORTS

Carroll, R.J. and D. Ruppert: Power transformations when fitting theoretical
models to data, Jan. 1982, #1383.

Ruppert, D., Reish, R.L., Deriso, R. and Carroll, R.J.: Vonte Carlo optimi-
zation by stochastic approximation (with application to harvesting of
Atlantic menhaden) April 1982, #1500.

Carroll, R.J., Spiegelman, C.H., Lan, K.K. G., Bailey, K.T. and Abbott, R.D.:
Errors-in-variables for binary regression models, August 1982, #1507.

Carroll, R.J. and Gallo, P.: Comparisons between some estimators in functional
errors-in-variables regression models, September 1982, #1508.

Gallo, P.P.: Properties of estimators in errors-in-variables regression models,
Oct. 1982, #1511.

.IN PREPARATION

Carroll, R.J. and Abbott, R.D. Interpreting multiple logistic regression coef-
ficients in prospective cbservational studies.

Carroll, R.J., Giltinan, D. and Ruppert, D. Bounded influence methods for hete-
roscedastic regression models.

Carroll, R.J. and Lirbard, F. A note On estimating the binomial N.

-. Carroll, R.J., Stefanski, L. and Ruppert, D. Consistency and asymptotic normal-
ity for binary errors-in-variables models.

OTHER TECHNICAL REPORTS

Mandrekar, V., Central limit prcblem and invariance principles on Banach spaces,
Lecture Notes, Institut de Recherche Mathematique Avancee, Universite Louis
Pasteur, Strasbourg, 1982, (partial support of AFOSR).
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STOCHASTIC PROCESSES SEMINARS

Nov. 4 On the regularity and Markov property of homogeneous random fields,
A.R. Soltani, University of North Carolina.

Nov. 9 Likelihocx ratios for random fields, A.V. Balakrishnan, University of
California at ins Angeles.

Nov. 19 Tv- Banach algebras of Feynman integrable functions, G.W. Johnson,
University of Nebraska.

Nov. 20 The role of Wiener processes in the Feynman integral and its generali-
zation, G. Kallianpur, University of North Carolina.

Dec. 2 Wold deconposition for random fields, V. Mandrekar, Michigan State
University and University of North Carolina.

Dec. 10 Rough surfaces and their mdelling, R. Adler, Technion, Israel.

Dec. 14 Random fields with independent increments, R. Adler, Technion, Israel.

Jan. 25 Invariance principles for Banach space valued random elements and em-
pirical processes. W. Philipp, MIT and University of Illinois.

Jan. 27 Invariance principles for Banach space valued random elements and em-
pirical processes: Techniques, W. Philipp, MIT and University of
Illinois.

Jan. 28 Invariance principles for martingales, W. Philipp, MIT and University
of Illinois.

Feb. Some applications of Ramsey theorems to analysis and probability, A

2-16 series of lectures by D. Kolzow, University of Erlangen-Nurnberg.

Feb. 19 Same reconstruction problems in measure theory and probability, D.
Kolzow, University of Erlangen-Nurnberg.

Feb. Martingales, Markov processes (generators and local characteristics),
11-18 random measures and point processes, A series of seminars by G.

Kallianpur, University of North Carolina.

Feb. Functional central limit theorems for semi-martingales, A series of
22-23 seminars by V. Mandrekar, Michingan State University and University of

North Carolina.

Mar. Stochastic models for the activity of neurons, A series of seminars
17-31 by G. Kallianpur, University of North Carolina.

Apr. 1 Shape and duration of FM clicks, G. Lindgren, University of Ind,
* Sweden.

S.

May 11 A measure-valued process in population genetics, D. Dawson, Carleton
University.

4..
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June 9 Regular variation, point processes, partial suns and maxima of i.i.d.
random variables, L. de Haan, Erasmus University, Amsterdam and Uni-
versity of North Carolina.

June 16 Bivariate extremes: Models and statistical decision, J. de Oliveira,
University of Lisbon.

July 29 Consistent estimates of parameters in continuous time stochastic pro-
cesses, A. Baqchi, University of California at Los Angeles and Techni-
cal University of Twente, Holland.

Aug. 6 A general principle for limit theorems in finitely additive prcbabili-
ty, R.L. Karandikar, Indian Statistical Institute and University of
North Carolina.

Aug. 12 General boundary problems for linear differential operators, Yu. A.
Rozanov, Steklov Mathematical Institute and Moscow University.

Aug. 16 Dnsker's delta functional, H.H. Kuo, Louisiana State University.

Aug. 17 Markov property of solutions of stochastic boundary problems, Yu. A.
Rozanov, Steklov Mathematical Institute and Moscow University.

Aug. 20 Some aspects of statistical inference in stochastic processes, G.

Roussas, University of Patras, Greece.

Aug. 27 Brownian functionals, T. Hida, Nagoya University and University of
North Carolina.

Sept. 1 Generalized Brownian functionals and applications, T. Hida, Nagoya
University and University of North Carolina.

Sept. 10 Infinite dimensional Ornstein-Uhlenbeck process and string model, Y.
Miyahara, Carleton University and Nagoya University.

Sept. 22 On extreme values of non-stationary sequences, J. Husler, University
of Bern and University of North Carolina.

Sept. 29 Dilation theory methods in stochastic processes, A. Weron, Wroclaw
Technical University and University of North Carolina.

Oct. 6 Multiparameter Brownian motion, S. Takenaka, Nagoya University
and University of North Carolina.

Oct. 11 Weak compactness problems, N. Dinculeanu, University of Florida.

Oct. 13 Sequential urn problems imbedded in birth processes, J. Husler,
University of Bern and University of North Carolina.

Oct. 20 Exact and limiting distribution of sustained maxima, W.P. McCormick,
University of Georgia and University of North Carolina.

Oct. 27 Similarities and contrasts between stable and Gaussian processes, S.
Caobanis, University of North Carolina.
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LIST OF PROFESSIONAL PERSONNEL ASSOCIATED WITH THE RESEARCH EFFORT

1. Faculty Investigators: S. Cambanis
R.J. Carroll
G. Kallianpur
M.R. Iadbetter

2. Visitors Senior: D. Daley (Jan. 81)
L. de Haan (May-July 82)
J. Tiago de Oliveira (June 82)
T. Hida (Aug.. 82)
D. Kannan (May 82-present)
D. K61zow (Oct.-Dec. 82)
H.H. Kuo (Aug. 82)
V. Mandrekar (Nov. 81-Feb. 82)
A. Weron (Sept. 82-present)

Junior: C. Hardin (Sept. 82-present)
S. Huang (June-Aug. 82)
J. Htsler (Sept. 82)
R.L. Karandikar (June 82-present)
W.P. McCormick (June 82-present)

7* D. Ramachandran (Nov. 81-May 82)
C. Schoenfelder (June-Sept. 82)
A.R. Soltani (Nov. 81-June 82)
C. Suen (Oct. 82)
S. Takenaka (Sept. 82-present)
R. Wolpert (June 82-present)

3. Graduate Students: D. Giltinan
N.L. Gerr
L. Hazareesingh
L. Stefanski

ii
i.
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nut7ACTIONS

November 1, 1981, through October 31, 1982

R.J. Carroll presented invited lectures at Texas A & M University, Southern

Methodist University, Virginia Technical University, Johns Hopkins University,

the National Institutes of Health (National Cancer Institute) and the University

of South Africa.

S. Cambanis presented invited talks at the meetings of the Institute of

Mathematical Statistics in Talahassee and of the American Mathematical Society

in Washington. He also gave talks at the Conference on Information Sciences and

Systems at Princeton, the. International Symposium on Information Theory in Les

Arcs, France and the Conference on Stochastic Processes and Their Applications

in Clermont-Ferrand, France.

at N.L. Gerr gave a talk at the Conference on Information Sciences and Systems

at Princeton.

M.R. Ieadbetter gave invited lectures at the Univz?-sity of Aarhus, Denmark;

Aalborg University, Denmark; University of Bern, Switzerland; Chalners

University, Goteborg, Sweden and the University of Tennessee and was one of the

guest lecturers (giving two talks) at the (Dec. 1981) meeting of statisticians

held annually in Holland. He also conpleted a book (with G. Lindgren and H.

Rootzen) on extreme values, to be published by Springer-Verlag in early 1983.

M.R. Leadbetter was elected to the Council of the Institute of Mathematical

Statistics and began service on that body at the annual meeting in August 1982.

.:
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G. Kallianpur presented the following:

(1) Invited talk at the ISI Golden Jubilee Conference on Statistics held in

December 1981 at the Indian Statistical Institute (ISI), Calcutta. [on

stationary random fields].

(2) Invited talk at the IFIP-ISI Conference on the Theory and Application of

Random Fields held at the Bangalore Campus of the ISI, January 1982. [On

Feynman integrals].

(3) Invited address on Nonlinear Filtering Theory at the Workshop in Filtering

and Control Theory at Bonn, West Germany (June 1982).

(4) Invited lecture at the Conference on Stochastic Processes of the Bernoulli

Society at the University of Clermont-Ferrand, France (July 1982). [On Feynman

integrals].

(5) Invited talk at the Ecole Polytechnique in Paris, (July 1982). [On

nonlinear filtering-white noise approach].

(6) Three lectures on Stochastic Filtering Theory given at the invitation of

the joint seminar of Carleton University (Ottawa), University of Ottawa and the

Research Institute of the University of Montreal. (lectures given at Montreal,

April 1982).

(7) Invited talk given at the session on "The legacy of Norbert Wiener" at the

Meetings of the American Mathematical Society at the University of Maryland,

College Park, Maryland (October 1982).

(8) The Layman Lectures in the Mathematical Sciences given at the University of

Nebraska, Lincoln, Nebraska (November 1982). [Feynman integrals and modern

developments in Filtering Theory].

(9) Participated by invitation, in the conference on Random Fields, Quantum

Field Theory and Differential Geometry sponsored by the American Mathematical

Soceity and organized by A. Jaffe and E. Dynkin. The conference was held at the

University of New Happshire in July 1982.
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.. (10) Together with Professor A.V. Balakrishnan of UCIA, organized the IFIP-ISI

conference on the Theory and Application of Random Fields held in Bangalore,

India (January 1982).

(11) Editor of the Proceedings of the Bangalore Conference on Random Fields (to

. be published by Springer-Verlag).
9 ..

(12) Bditor (with P.R, Krishnaiah and J.K. Ghosh) of Essays in Honor of C.R.

*Rao, published by North Holland (1982).

9-.;
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